DECISION MATHEMATICS (C) UNIT 1

1. Use the Shuttle Sort algorithm to arrange the following list of towns in alphabetical order. Show the result of each pass.

BATH RUGBY LEEDS WIGAN HULL DOVER [5]

- 2. Two algorithms for sorting, A and B, require the following numbers of operations to sort *n* items:
 Method A: 100n² 3n + 6 Method B: 0.1 x 2ⁿ
 Evaluate each one for n = 10 and n = 100, and comment on their relative performance. [5]
- 3. First class postage costs 27p and second class costs 19p. A secretary has *x* letters to send by second class, *y* letters by first class and *z* packages (for which postage costs 38p).
 - (i) Given a budget of £20 for postage, write down an inequality for x, y and z. [1]

Generally, there are at least 20 first class letters to post.

- (ii) Explain how the use of the variable X = x + 2z enables the problem to be analysed as a graphical linear programming problem. Find the maximum value of *X*, and hence find the maximum number of parcels that may be posted. [4]
- 4. A cable TV company wishes to connect the seven towns shown in the following map :

- (i) Use Kruskal's algorithm to find the minimum spanning tree for this network. [6]
- (ii) The area between Seaford and Eastbourne is designated a National Park, and it would cost twice as much, per mile, to lay a cable there as in the rest of the network. Find the tree that would now be the cheapest way of connecting the towns. [2]
- 5. A doctor has to visit a number of patients on an estate, as shown below.

Distances in m.

[4

- (i) By deleting C, find a lower bound for the length of his journey.
- (ii) Alternatively, D may be deleted to find a lower bound. Show that this gives two possible

6. A machine is programmed to inspect all the wires in a circuit. It can only travel along wires.(i) List the valencies of the nodes in the circuit shown. [1]

- (ii) Hence use an appropriate algorithm to find the shortest distance the machine must travel, starting and finishing at F.
 - [5]
- (iii) Write down a possible sequence of nodes that the machine can pass over.[2]
- (iv) Write down the number of possible pairings to consider when using this algorithm when there are (a) 6 odd nodes, (b) 10 odd nodes. Comment on your results. [3]
- 7. A pottery factory produces decorative mugs, bowls and plates. A mug takes 40 minutes to paint, a bowl 20 minutes and a plate 50 minutes. Each employee works a 40-hour week, and has enough room to store 80 items. No more than 30 plates should be painted by any single employee.

The profits on each article are £3 per mug, £2 per bowl and £6 per plate.

(i) Write down three inequalities representing the constraints on *x*, *y* and *z*, the numbers of mugs, bowls and plates respectively produced by one painter. [3]

To maximise the profit, it is decided to use the Simplex algorithm.

- (ii) Write down an initial tableau, using *r*, *s* and *t* as slack variables. [1]
- (iii) Increasing *z* first, perform the Simplex process, explaining why your final tableau is optimal. [9]
- (iv) Write down the number of mugs, bowls and plates that are needed to give the maximum profit per worker, and state that profit. [3]

6.	(i)	A2	B2 C2	D3 E	4 F3	G4 H	H2 I2	J4	5.1	
	$(\cdot \cdot)$	K4 1	L3 MI3					11 21 1	31 01 D 1	
	(ii) Farming the odd nodes : $DF + LW = 4 + 5 = 9$, $DL + WF = 10 + 11 = 21$, DM + EL = 15 + 6 = 21 as repeat DE and LM. Distance = 75 + 0 = 94.							11 = 21, 1		
	DM + FL = 15 + 6 = 21, so repeat DF and LM. Distance = $75 + 9 = 84(iii) e.g. F G H N M G B A E F L M L K P O J K E D C I J D E F$							+9 = 84 H	BIMIAI	
								ľ	MIAI	
	 (iv) (a) For 6 nodes, there are 5 x 3 = 15 possible pairing (b) For 10 nodes, there are 9 x 7 x 5 x 3 = 945 possibilities 								31	
									31	
	Number of possibilities increases rapidly with the number of nodes							f nodes I	31	11
7.	(i) $4x + 2y + 5z \le 240$ $x + y + z \le 80$ $z \le 30$							H	B1 B1 B1	
	(ii)	(ii) To maximise $P = 3x + 2y + 6z$:								
		Р	x	v	Z	r	S	t		
		1	-3	-2	-6	0	0	0	0	
		0	4	2	5	1	0	0	240	
		0	1	1	1	0	1	0	80	
		0	0	0	\bigcirc	0	0	1	30	
								H	31	
	(iii) Increase z									
		1	-3	-2	0	0	0	6	180	
		0	4	2	0	1	0	-5	90	
		0	1	1	0	0	1	-1	50	
		0	0	0	1	0	0	1	30	
								Ν	M1 A1	
	Increase x									
		1	0	(-0.5)	0	0.75	0	2.25	247.5	
		0	1	0.5	0	0.25	0	-1.25	22.5	
		0	0	0.5	0	-0.25	1	0.25	27.5	
		0	0	0	1	0	0	1	30	
									M1 A1 A1	
	Increase <i>y</i>									
		1	1	0	0	1	0	1	270	
		0	2	1	0	0.5	0	-2.5	45	
		0	-1	0	0	-0.5	1	1.5	5	
		0	0	0	1	0	0	1	30	
								N	M1 A1 A1	

This is a final optimal tableau, because the objective row is all positive (iv) Thus max. $P = \pounds 270$ with no mugs, 45 bowls, 30 plates

M1 A1 A1 16

B1